

Welcome to hippylib2muq’s documentation!

 _ ___ ____ ______ ___ _ _ __ __ _ _ ___
| |__ |_ _| _ \| _ \ \ / / (_) |__ | \/ | | | |/ _ \
| '_ \ | || |_) | |_) \ V /| | | '_ \ _____| |\/| | | | | | | |
| | | || || __/| __/ | | | | | |_) |_____| | | | |_| | |_| |
|_| |_|___|_| |_| |_| |_|_|_.__/ |_| |_|___/ ___\

Scalable Markov chain Monte Carlo Sampling Methods for Large-scale Bayesian
Inverse Problems Governed by PDEs

hIPPYlib-MUQ is a Python interface between two open source softwares, hIPPYlib
and MUQ, which have complementary capabilities. hIPPYlib [https://hippylib.github.io]
is an extensible software package aimed at solving deterministic and linearized Bayesian inverse
problems governed by PDEs.
MUQ [http://muq.mit.edu/] is a collection of tools for solving uncertainty quantification problems.
hIPPYlib-MUQ integrates these two libraries into a unique software framework,
allowing users to implement the state-of-the-art Bayesian inversion algorithms
in a seamless way.

Please look into example notebook below to get to know what hIPPYlib-MUQ
does with step-by-step implementations.

	Installation

	Changelog

	How to Contribute

	Example Notebook

	API Reference

Indices and search

	Index

	Module Index

	Search Page

Installation

hIPPYlib-MUQ builds on hIPPYlib [https://github.com/hippylib/hippylib]
version 3.0.0 with FEniCS [https://fenicsproject.org/] version 2019.1 and
MUQ [https://bitbucket.org/mituq/muq2/src/master/] version 0.3.0.
Installations of these packages are summarized here, but please see the
detailed installation guides given in each github/bitbucket page.

Additional dependencies are

	jupyter, matplotlib (for tutorial notebooks)

	seaborn, statsmodels (for postprocessing)

Docker

We highly recommend to use our prebuilt Docker image, which is the
easiest way to run hIPPYlib-MUQ. The docker image with the installation of
all the dependencies is available
here [https://hub.docker.com/r/ktkimyu/hippylib2muq].

With Docker [https://www.docker.com/] installed on your system, type:

docker run -ti --rm ktkimyu/hippylib2muq

Then, hIPPYlib-MUQ is available within the generated Docker container.

If you want to run hIPPYlib-MUQ using interactive notebooks, please type

docker run -ti --rm -p 8888:8888 ktkimyu/hippylib2muq 'jupyter-notebook --ip=0.0.0.0'

The notebook will be available at the following address in your web-browser.
If you want to mount your local directory on docker container, add it with -v
options, e.g., to mount your current directory on /home/fenics/shared/ in
docker container, type

docker run -ti --rm -v $(pwd):/home/fenics/shared
 -p 8888:8888 ktkimyu/hippylib2muq 'jupyter-notebook --ip=0.0.0.0'

Conda

Conda is also a very convenient way to set up an enviroment to use hIPPYlib-MUQ.
The script below builds a conda enviroment with FEniCS 2019 and MUQ.
hIPPYlib 3.0.0 is also downloaded and installed via pip.

conda create -q -n hippylib2muq -c conda-forge fenics==2019.1.0 muq seaborn statsmodels
conda activate hippylib2muq
git clone --depth 1 --branch 3.0.0 https://github.com/hippylib/hippylib.git
python hippylib/setup.py install

Installation of MUQ from source codes (Expert user/MUQ developers)

This requires cmake, the GNU Compiler Collection or Clang, and pybind11.
On macOS, you can have these by installing Xcode Command Line Tools.

To compile and install MUQ, type

git clone https://bitbucket.org/mituq/muq2
cd muq2/build
cmake -DCMAKE_INSTALL_PREFIX=/your/muq2/install/directory -DMUQ_USE_PYTHON=ON ..
make
make install

Then Python static libraries are generated in /your/muq2/install/directory/lib folder.

You may append the path to this library folder, for example,

export PYTHONPATH=/your/muq2/install/directory/python:$PYTHONPATH

Build the hIPPYlib-MUQ documentation using Sphinx

You can build the documentation on your local machine by using sphinx
(tested on version 2.3.0).
Additional required packages are

	m2r

	sphinx_rtd_theme (current HTML theme)

If you want to use other HTML themes, install the corresponding package and
modify the following line in conf.py in doc/source folder accordingly:

html_theme = 'name_of_the_theme'

All the packages above can be installed via pip or conda.

Once the required packages are installed, run make html from doc folder to
build the documentation, then the document is available at
doc/build/html/.

Changelog

Version 0.2.0, released on 11/18/2021

	Add two example python scripts

	Fix minor errors in gaussian module

Version 0.1.0, released on 11/12/2020

	Initial release under GPL3.

How to Contribute

We welcome contributions at all levels: bugfixes, code improvements,
simplifications, new capabilities, improved documentation, new
examples/tutorials, etc.

Use a pull request (PR) toward the hippylib2muq:master branch to propose your
contribution. If you are planning significant code changes, or have any
questions, you should also open an
issue [https://github.com/hippylib/hippylib2muq/issues] before issuing a PR.

hIPPYlib-MUQ is an interface program between hIPPYlib and MUQ;
contributions should be related to the interface; for contributing to each
program, please refer to their own repositories
(hIPPYlib [https://hippylib.github.io] and MUQ [http://muq.mit.edu/]).

hIPPYlib-MUQ is maintained by https://github.com/hippylib, the main developer
hub for the hIPPYlib project.

All new contributions must be made under the terms of the GPL3
license.

By submitting a pull request, you are affirming the Developer’s Certificate of
Origin at the end of this file.

Quick Summary

	Please create development branches off hippylib2muq:master.

	Please follow the developer guidelines, in particular
with regards to documentation and code styling.

	Pull requests should be issued toward hippylib2muq:master. Make sure
to check the items off the Pull Request Checklist.

	After approval, hIPPYlib-MUQ developers merge the PR in hippylib2muq:master.

	If you are also interested in the whole hIPPYlib project, we encourage you to
join the hIPPYlib organization (see here [https://github.com/hippylib/hippylib/blob/master/CONTRIBUTING.md#hippylib-organization]); if you are
interested in the whole MUQ project, please take a look at MUQ [http://muq.mit.edu].

	Don’t hesitate to contact us if you have any questions.

New Feature Development

	A new feature should be important enough that at least one person, the
proposer, is willing to work on it and be its champion.

	The proposer creates a branch for the new feature (with suffix -dev), off
the master branch, or another existing feature branch, for example:

Clone assuming you have setup your ssh keys on GitHub:
git clone git@github.com:hippylib/hippylib2muq.git

Alternatively, clone using the "https" protocol:
git clone https://github.com/hippylib/hippylib2muq.git

Create a new feature branch starting from "master":
git checkout master
git pull
git checkout -b feature-dev

Work on "feature-dev", add local commits
...

(One time only) push the branch to github and setup your local
branch to track the github branch (for "git pull"):
git push -u origin feature-dev

	We prefer that you create the new feature branch as a fork.
To allow hIPPYlib-MUQ developers to edit the PR, please enable upstream edits [https://help.github.com/articles/allowing-changes-to-a-pull-request-branch-created-from-a-fork/].

	The typical feature branch name is new-feature-dev, e.g. optimal_exp_design-dev. While
not frequent in hippylib2muq, other suffixes are possible, e.g. -fix, -doc, etc.

Developer Guidelines

	Keep the code lean and as simple as possible

	Well-designed simple code is frequently more general and powerful.

	Lean code base is easier to understand by new collaborators.

	New features should be added only if they are necessary or generally useful.

	Code must be compatible with Python 3.

	When adding new features add an example in the example or application folder and/or a
new notebook in the tutorial folder.

	The preferred way to export solutions for visualization in paraview is using dl.XDMFFile

	The preferred way to save samples data is using h5py [https://github.com/hippylib/hippylib2muq.git].

	Keep the code general and reasonably efficient

	Main goal is fast prototyping for research.

	When in doubt, generality wins over efficiency.

	Respect the needs of different users (current and/or future).

	Keep things separate and logically organized

	General usage features go in hippylib2muq (implemented in as much generality as
possible), non-general features go into external apps/projects.

	Inside hippylib2muq, compartmentalize between interface, mcmc, utility, etc.

	Contributions that are project-specific or have external dependencies are
allowed (if they are of broader interest), but should be #ifdef-ed and not
change the code by default.

	Code specifics

	All significant new classes, methods and functions have sphinx-style
documentation in source comments.

	Code styling should resemble existing code.

	When manually resolving conflicts during a merge, make sure to mention the
conflicted files in the commit message.

Pull Requests

	When your branch is ready for other developers to review / comment on
the code, create a pull request towards hippylib2muq:master.

	Pull request typically have titles like:

Description [new-feature-dev]

for example:

Bayesian Optimal Design of Experiments [oed-dev]

Note the branch name suffix (in square brackets).

	Titles may contain a prefix in square brackets to emphasize the type of PR.
Common choices are: [DON'T MERGE], [WIP] and [DISCUSS], for example:

[DISCUSS] Bayesian Optimal Design of Experiments [oed-dev]

	Add a description, appropriate labels and assign yourself to the PR. The hIPPYlib
team will add reviewers as appropriate.

	List outstanding TODO items in the description.

Pull Request Checklist

Before a PR can be merged, it should satisfy the following:

	[] Update CHANGELOG:

	[] Is this a new feature users need to be aware of? New or updated application or tutorial?

	[] Does it make sense to create a new section in the CHANGELOG to group with other related features?

	[] New examples/applications/tutorials:

	[] All new examples/applications/tutorials run as expected.

	[] New capability:

	[] All significant new classes, methods and functions have sphinx-style documentation in source comments.

	[] Add new examples/applications/tutorials to highlight the new capability.

	[] For new classes, functions, or modules, edit the corresponding .rst file in the doc folder.

	[] If this is a major new feature, consider mentioning in the short summary inside README (rare).

	[] If this is a C++ extension, the package_data dictionary in setup.py should include new files.

Contact Information

	Contact the hIPPYlib-MUQ team by posting to the GitHub issue
tracker [https://github.com/hippylib/hippylib2muq/issues].
Please perform a search to make sure your question has not been answered already.

Developer’s Certificate of Origin 1.1 [https://developercertificate.org/]

By making a contribution to this project, I certify that:

	The contribution was created in whole or in part by me and I have the right
to submit it under the open source license indicated in the file; or

	The contribution is based upon previous work that, to the best of my
knowledge, is covered under an appropriate open source license and I have
the right under that license to submit that work with modifications, whether
created in whole or in part by me, under the same open source license
(unless I am permitted to submit under a different license), as indicated in
the file; or

	The contribution was provided directly to me by some other person who
certified (a), (b) or (c) and I have not modified it.

	I understand and agree that this project and the contribution are public and
that a record of the contribution (including all personal information I
submit with it, including my sign-off) is maintained indefinitely and may be
redistributed consistent with this project or the open source license(s)
involved.

Acknowledgement: This file is made based on
CONTRIBUTING.md [https://github.com/hippylib/hippylib/blob/master/CONTRIBUTING.md]
of hIPPYlib [https://hippylib.github.io] which used MFEM team [https://github.com/mfem] contributing
guidelines file as template.

\[\def\data{ {\bf d}_\rm{obs}}
\def\vec{\bf}
\def\m{ {\bf m}}
\def\map{m_{\nu}}
\def\postcov{ \mathcal{C}_{\nu} }
\def\prcov{ \mathcal{C}_{\text{prior}} }
\def\matrix{\bf}
\def\Hmisfit{ \mathcal{H}_{\text{misfit}} }
\def\diag{\operatorname{diag}}
\def\Vr{{\matrix V}_r}
\def\Wr{{\matrix W}_r}
\def\Ir{{\matrix I}_r}
\def\Dr{{\matrix D}_r}
\def\H{{\matrix H} }
\def\matHmis{ {\H}_{\rm misfit}}
\def\Gpost{\boldsymbol{\Gamma}_{\nu} }
\def\Gprior{ \boldsymbol{\Gamma}_{\rm prior} }\]

Bayesian quantification of parameter uncertainty

I. Estimating the posterior pdf of the coefficient parameter field in an elliptic PDE

In this example we tackle the problem of quantifying the
uncertainty in the solution of an inverse problem governed by an
elliptic PDE via the Bayesian inference framework.
Hence, we state the inverse problem as a
problem of statistical inference over the space of uncertain
parameters, which are to be inferred from data and a physical
model. The resulting solution to the statistical inverse problem
is a posterior distribution that assigns to any candidate set of
parameter fields, our belief (expressed as a probability) that a
member of this candidate set is the “true” parameter field that
gave rise to the observed data.

Bayes’s Theorem

The posterior probability distribution combines the prior pdf
\(\mu_{\text{prior}}(m)\) over the parameter space, which encodes
any knowledge or assumptions about the parameter space that we may
wish to impose before the data are considered, with a likelihood pdf
\(\pi_{\text{like}}(\data \; | \; m)\), which explicitly
represents the probability that a given parameter \(m\)
might give rise to the observed data \(\data \in \mathbb{R}^{n_t}\), namely:

\[\begin{align}
d \mu_{\text{post}}(m | \data) \propto \pi_{\text{like}}(\data \,|\, m) \, d\mu_{\text{prior}}(m).
\end{align}\]

Note that infinite-dimensional analog of Bayes’s formula requires the use Radon-Nikodym derivatives instead of probability density functions.

The prior

We consider a Gaussian prior with mean \(m_{\rm prior}\) and covariance
\(\prcov\), \(\mu_{\rm prior} \sim \mathcal{N}({m}_{\rm prior}, \prcov)\).
The covariance is given by the discretization of the inverse of
differential operator \(\mathcal{A}^{-2} = (-\gamma \Delta + \delta I)^{-2}\),
where \(\gamma\), \(\delta > 0\) control the correlation length and the variance of the prior operator. This choice of prior ensures that it is a trace-class operator, guaranteeing bounded pointwise variance and a well-posed infinite-dimensional Bayesian inverse problem.

The likelihood

\[\data = {\bf f}(m) + {\bf e }, \;\;\; {\bf e} \sim \mathcal{N}({\bf 0}, {\bf \Gamma}_{\text{noise}})\]

\[\pi_{\text like}(\data \; | \; m) \propto \exp \left(- \tfrac{1}{2} \parallel {\bf f}(m) - \data \parallel^{2}_{{\bf \Gamma}_{\text{noise}}^{-1}}\right)\]

Here \({\bf f}\) is the parameter-to-observable map that takes a parameter
\(m\) and maps it to the space observation vector \(\data\).

In this application, \({\bf f}\) consists in the composition of a PDE solve
(to compute the state \(u\)) and a pointwise observation of the state
\(u\) to extract the observation vector \(\data\).

The posterior

\[d\mu_{\text{post}}(m \; | \; \data) \propto \exp \left(- \tfrac{1}{2} \parallel {\bf f}(m) - \data \parallel^{2}_{{\bf \Gamma}_{\text{noise}}^{-1}} \! - \tfrac{1}{2}\parallel m - m_{\rm prior} \parallel^{2}_{\prcov^{-1}} \right)\]

The Laplace approximation to the posterior: \(\nu \sim \mathcal{N}({\map},\bf \postcov)\)

The mean of the Laplace approximation posterior distribution, \({\map}\), is the
parameter maximizing the posterior, and
is known as the maximum a posteriori (MAP) point. It can be found
by minimizing the negative log of the posterior, which amounts to
solving a deterministic inverse problem) with appropriately weighted norms,

\[\map := \underset{m}{\arg \min} \; \mathcal{J}(m) \;:=\;
\Big(
\frac{1}{2} \| {\bf f}(m) - \data \|^2_{ {\bf \Gamma}_{\text{noise}}^{-1}}
+\frac{1}{2} \| m -m_{\rm prior} \|^2_{\prcov^{-1}}
\Big).\]

The posterior covariance matrix is then given by the inverse of
the Hessian matrix of \(\mathcal{J}\) at \(\map\), namely

\[\postcov = \left(\Hmisfit(\map) + \prcov^{-1} \right)^{-1},\]

provided that \(\Hmisfit(\map)\) is positive semidefinite.

The generalized eigenvalue problem

In what follows we denote with \(\matHmis, \Gpost, \Gprior \in \mathbb{R}^{n\times n}\)
the matrices stemming from the discretization of the
operators \(\Hmisfit(\map)\), \(\postcov\), \(\prcov\) with respect
to the unweighted Euclidean inner product.
Then we considered the symmetric generalized eigenvalue problem

\[\matHmis {\matrix V} = \Gprior^{-1} {\matrix V} {\matrix \Lambda},\]

where \({\matrix \Lambda} = \diag(\lambda_i) \in \mathbb{R}^{n\times n}\)
contains the generalized eigenvalues and the columns of \({\matrix V}\in \mathbb R^{n\times n}\)
the generalized eigenvectors such that
\({\matrix V}^T \Gprior^{-1} {\matrix V} = {\matrix I}\).

Randomized eigensolvers to construct the approximate spectral decomposition

When the generalized eigenvalues \(\{\lambda_i\}\) decay rapidly, we can
extract a low-rank approximation of \(\matHmis\) by retaining only the
\(r\)
largest eigenvalues and corresponding eigenvectors,

\[\matHmis \approx \Gprior^{-1} \Vr {\matrix{\Lambda}}_r \Vr^T \Gprior^{-1}.\]

Here, \(\Vr \in \mathbb{R}^{n\times r}\) contains only the \(r\)
generalized eigenvectors of \(\matHmis\) that correspond to the \(r\) largest eigenvalues,
which are assembled into the diagonal matrix \({\matrix{\Lambda}}_r = \diag (\lambda_i) \in \mathbb{R}^{r \times r}\).

The approximate posterior covariance

Using the Sherman–Morrison–Woodbury formula, we write

\[\begin{align}
 \notag \Gpost = \left(\matHmis+ \Gprior^{-1}\right)^{-1}
 = \Gprior^{-1}-\Vr {\matrix{D}}_r \Vr^T +
 \mathcal{O}\left(\sum_{i=r+1}^{n} \frac{\lambda_i}{\lambda_i +
 1}\right),
\end{align}\]

where \({\matrix{D}}_r :=\diag(\lambda_i/(\lambda_i+1)) \in \mathbb{R}^{r\times r}\).
The last term in this expression captures the
error due to truncation in terms of the discarded eigenvalues; this
provides a criterion for truncating the spectrum, namely that \(r\) is
chosen such that \(\lambda_r\) is small relative to 1.

Therefore we can approximate the posterior covariance as

\[\Gpost \approx \Gprior - \Vr {\matrix{D}}_r \Vr^T\]

Drawing samples from a Gaussian distribution with covariance $Gpost$

Let \({\bf x}\) be a sample for the prior distribution, i.e. \({\bf x} \sim \mathcal{N}({\bf 0}, \Gprior)\), then, using the low rank approximation of
the posterior covariance, we compute a sample \({\bf v} \sim \mathcal{N}({\bf 0}, \Gpost)\) as

\[{\bf v} = \big\{ \Vr \big[({\matrix{\Lambda}}_r +
 \Ir)^{-1/2} - \Ir \big] \Vr^T\Gprior^{-1} + {\bf I} \big\} {\bf x}\]

Full posterior sampling via Markov chain Monte Carlo (MCMC)

The posterior can be fully explored by using MCMC algorithms, the most popular method for sampling from a probability distribution.
In this example, some of the advanced MCMC algorithms are considered and compared in terms of efficiency and accuracy.

The preconditioned Crank-Nicolson algorithm (pCN)

The pCN algorithm is perhaps the simplest MCMC method that is well-defined in the infinite
dimensional setting ensuring a mixing rates independent of the dimension of the discretized parameter space.

The algorithm proceeds as follows (see [Cotter et al. (2013)] [Pinski et al. (2015)] for the details):

	Given \(m^{(k)}\), propose \(v^{(k+1)} = m_{\rm prop} + \sqrt{1 - \beta^2}(m^{(k)} - m_{\rm prop}) + \beta \xi^{(k)}, \quad \xi^{(k)} \sim \mathcal{N}(0, \mathcal{C}_{\rm prop})\)

	Set \(m^{(k+1)} = v^{(k+1)}\) with probability \(a(m^{(k)}, v^{(k+1)}) = \min \left(1, \frac{\mu_{\text{post}}(v^{(k+1)}) q(v^{(k+1)}, m^{(k)})}{\mu_{\text{post}}(m^{(k)}) q(m^{(k)}, v^{(k+1)})} \right)\)

where \(q(m,v) \sim \mathcal{N}\left(m_{\rm prop} + \sqrt{1 - \beta^2}(m - m_{\rm prop}), \beta^2 \mathcal{C}_{\rm prop} \right)\) with proposal mean \(m_{\rm prop}\) and covariance \(\mathcal{C}_{\rm prop}\) and \(\beta\) is a parameter controlling the step length of the proposal.

The preconditioned Metropolis adjusted Langevin algorithm (MALA)

The MALA algorithm is built on two mechanisms: the overdamped Langevin diffusion to propose a move and the Metropolis–Hastings algorithm to accept or reject the proposal move [Roberts and Tweedie (1996)].

The preconditioned MALA algorithm is described as follows:

	Given \(m^{(k)}\), propose \(v^{(k+1)} = m^{(k)} + \tau \mathcal{A}_{\rm prop} \nabla \log \mu_{\text{post}} (m^{(k)}) + \sqrt{2 \tau \mathcal{A}_{\rm prop}} \xi^{(k)}, \quad \xi^{(k)} \sim \mathcal{N}(0, \mathcal{I})\)

	Set \(m^{(k+1)} = v^{(k+1)}\) with probability \(a(m^{(k)}, v^{(k+1)}) = \min \left(1, \frac{\mu_{\text{post}}(v^{(k+1)}) q(v^{(k+1)}, m^{(k)})}{\mu_{\text{post}}(m^{(k)}) q(m^{(k)}, v^{(k+1)})} \right)\)

where \(q(m,v) \sim \mathcal{N}\left(m + \tau \mathcal{A}_{\rm prop} \nabla \log \mu_{\text{post}} (m), 2 \tau \mathcal{A}_{\rm prop} \right)\) with a proposal covariance \(\mathcal{A}_{\rm prop}\) and \(\tau\) is a step size.

The Delayed Rejection (DR)

The basic idea of the delayed rejection is to use a sequence of stages in each iteration.
Unlike the basic Metropolis-Hastings algorithm, if a candidate is rejected, a new move is proposed.
The acceptance rate for the new proposal move is adjusted so that the stationary distribution is preserved.
For the details, see [Mira (2001)].

This tutorial shows

	Definition of the component of an inverse problem (the forward problem, the prior, and the misfit functional) using hIPPYlib

	Computation of the maximum a posterior MAP point using inexact Newton-CG algorithm

	Low-rank based approximation of the posterior covariance under the Laplace Approximation

	Sampling from the prior distribution and Laplace Approximation using hIPPYlib

	Construction of a MUQ workgraph using a PDE model defined in hIPPYlib

	Exploring the full posterior using the MCMC methods implemented in MUQ

	Convergence diagnostics of MCMC simulation results and their comparison

Mathematical tools used

	Finite element method

	Derivation of gradient and Hessian via the adjoint method

	Inexact Newton-CG

	Randomized eigensolvers

	Bayes’ formula

	MCMC methods

List of software used

hIPPYlib, MUQ and their interfaces are the main software framework in this tutorial.
Additional tools used are:

	FEniCS, A parallel finite element element library for the discretization of partial differential equations

	PETSc, A set of data structures and routines for scalable and efficient linear algebra operations and solvers

	Numpy, A python package for linear algebra

	Matplotlib, A python package for visualizing the results

References

Cotter, S. L., Roberts, G. O., Stuart, A. M.,

 hippylib2muq

hippylib2muq

	hippylib2muq package
	Subpackages
	hippylib2muq.interface package
	Submodules

	hippylib2muq.interface.gaussian module

	hippylib2muq.interface.modpiece module

	Module contents

	hippylib2muq.mcmc package
	Submodules

	hippylib2muq.mcmc.diagnostics module

	hippylib2muq.mcmc.qoi module

	Module contents

	hippylib2muq.utility package
	Submodules

	hippylib2muq.utility.conversion module

	hippylib2muq.utility.postprocessing module

	Module contents

	Module contents

 hippylib2muq package

hippylib2muq package

Subpackages

	hippylib2muq.interface package
	Submodules

	hippylib2muq.interface.gaussian module

	hippylib2muq.interface.modpiece module

	Module contents

	hippylib2muq.mcmc package
	Submodules

	hippylib2muq.mcmc.diagnostics module

	hippylib2muq.mcmc.qoi module

	Module contents

	hippylib2muq.utility package
	Submodules

	hippylib2muq.utility.conversion module

	hippylib2muq.utility.postprocessing module

	Module contents

Module contents

 hippylib2muq.interface package

hippylib2muq.interface package

Submodules

hippylib2muq.interface.gaussian module

This module provides a set of wrappers that expose some functions of
hippylib (the prior Gaussian distributions and the low-rank based Laplace
approximation to the posterior distribution) to muq.

	
class hippylib2muq.interface.gaussian.BiLaplaceGaussian(hp_prior, use_zero_mean=False)

	Bases: muq.Modeling.PyGaussianBase

The prior Gaussian distribution with Laplacian-like covariance operator

A class interfacing between hippylib::BiLaplacianPrior and muq::GaussianBase.

	
ApplyCovSqrt(x)

	Apply the square root of covariance matrix to x.

	Parameters

	x (numpy::ndarray) – input vector

	
ApplyCovariance(x)

	Apply the covariance matrix to x.

	Parameters

	x (numpy::ndarray) – input vector

	
ApplyPrecSqrt(x)

	Apply the square root of precision matrix to x.

	Parameters

	x (numpy::ndarray) – input vector

	
ApplyPrecision(x)

	Apply the precision matrix to x.

	Parameters

	x (numpy::ndarray) – input vector

	
SampleImpl(inputs)

	Draw a sample from the prior distribution.
This is an overloaded function of muq::PyGaussianBase
The argument inputs is not used, but should be given when
SampleImpl is called.

	Parameters

	inputs (numpy::ndarray) – input vector

	
class hippylib2muq.interface.gaussian.LAPosteriorGaussian(lapost, use_zero_mean=False)

	Bases: muq.Modeling.PyGaussianBase

Low-rank based Laplace approximation to the posterior distribution

A class interfacing between hippylib::GaussianLRPosterior and muq:PyGaussianBase.

	
ApplyCovSqrt(x)

	Apply the square root of covariance matrix to x.

	Parameters

	x (numpy::ndarray) – input vector

	
ApplyCovariance(x)

	Apply the covariance matrix to x.

	Parameters

	x (numpy::ndarray) – input vector

	
ApplyPrecision(x)

	Apply the precision matrix to x.

	Parameters

	x (numpy::ndarray) – input vector

	
SampleImpl(inputs)

	Draw a sample from the approximated posterior distribution.
This is an overloaded function of muq::PyGaussianBase.

	Parameters

	inputs (numpy::ndarray) – input vector

	
class hippylib2muq.interface.gaussian.LaplaceGaussian(hp_prior, use_zero_mean=False)

	Bases: muq.Modeling.PyGaussianBase

The prior Gaussian distribution with Laplacian-like covariance operator

An interface class between hippylib::LaplaceGaussian and muq::GaussianBase.
This class is appropriate for 1D (parameter) problems.

	
ApplyCovariance(x)

	Apply the covariance matrix to x.

	Parameters

	x (numpy::ndarray) – input vector

	
ApplyPrecision(x)

	Apply the precision matrix to x.

	Parameters

	x (numpy::ndarray) – input vector

	
SampleImpl(inputs)

	Draw a sample from the prior distribution.
This is an overloaded function of muq::PyGaussianBase.
The argument inputs is not used, but should be given when
SampleImpl is called.

	Parameters

	inputs (numpy::ndarray) – input vector

hippylib2muq.interface.modpiece module

This module provides a set of wrappers that bind some hippylib functionalities
such that they can be used by muq.

Please refer to ModPiece [https://mituq.bitbucket.io/classmuq_1_1Modeling_1_1ModPiece.html] for the detailes of member functions defined here.

	
class hippylib2muq.interface.modpiece.LogBiLaplaceGaussian(prior)

	Bases: muq.Modeling.PyModPiece

Log-bi-Laplace prior

This class evaluates log of the bi-Laplacian prior.

	
EvaluateImpl(inputs)

	Evaluate the log of bi-Laplacian prior.

	Parameters

	inputs (numpy::ndarray) – input vector

	
class hippylib2muq.interface.modpiece.Param2LogLikelihood(model)

	Bases: muq.Modeling.PyModPiece

Parameter to log-likelihood map

This class implements mapping from parameter to log-likelihood.

	
ApplyHessianImpl(outWrt, inWrt1, inWrt2, inputs, sens, vec)

	Apply Hessian to vec for given sens and inputs.

	Parameters

	
	outWrt (int) – output dimension; should be 0

	inWrt1 (int) – input dimension; should be 0

	inWrt2 (int) – input dimension; should be 0

	inputs (numpy::ndarray) – parameter values

	sens (numpy::ndarray) – sensitivity values

	vec (numpy::ndarray) – input vector Hessian applies to

	
ApplyJacobianImpl(outDimWrt, inDimWrt, inputs, vec)

	Apply Jacobian to vec for given inputs.

	Parameters

	
	outDimWrt (int) – output dimension; should be 0

	inDimWrt (int) – input dimension; should be 0

	inputs (numpy::ndarray) – parameter values

	vec (numpy::ndarray) – input vector Jacobian applies to

	
EvaluateImpl(inputs)

	Evaluate the log-likelihood for given inputs.

	Parameters

	inputs (numpy::ndarray) – parameter values

	
GradientImpl(outDimWrt, inDimWrt, inputs, sens)

	Compute gradient; apply the transpose of Jacobian to sens for given
inputs.

	Parameters

	
	outDimWrt (int) – output dimension; should be 0

	inDimWrt (int) – input dimension; should be 0

	inputs (numpy::ndarray) – parameter values

	sens (numpy::ndarray) – input vector the transpose of Jacobian
applies to

	
JacobianImpl(outDimWrt, inDimWrt, inputs)

	Compute the Jacobian for given inputs.

	Parameters

	
	outDimWrt (int) – output dimension; should be 0

	inDimWrt (int) – input dimension; should be 0

	inputs (numpy::ndarray) – parameter values

	
class hippylib2muq.interface.modpiece.Param2obs(model)

	Bases: muq.Modeling.PyModPiece

Parameter to observable map

This class implements mapping from parameter to observations.

	
EvaluateImpl(inputs)

	Evaluate the observations for given inputs.

	Parameters

	inputs (numpy::ndarray) – parameter values

	
GradientImpl(outDimWrt, inDimWrt, inputs, sens)

	Compute gradient; apply the transpose of Jacobian to sens.

	Parameters

	
	outDimWrt (int) – output dimension; should be 0

	inDimWrt (int) – input dimension; should be 0

	inputs (numpy::ndarray) – parameter values

	sens (numpy::ndarray) – input vector the transpose of Jacobian
applies to

Module contents

 hippylib2muq.mcmc package

hippylib2muq.mcmc package

Submodules

hippylib2muq.mcmc.diagnostics module

This module provides a convergence diagnostic for samples drawn from MCMC methods.

	
class hippylib2muq.mcmc.diagnostics.MultPSRF(ndof, nsamps, nchain)

	Bases: object

Computing the Multivariate Potential Scale Reduction Factor

This class is to compute the Multivariate Potential Scale Reduction Factor
(MPSRF) described in [Brooks1998].
Note that MPSRF is the square-root version, i.e., \(\hat{R}^p\) where
\(\hat{R}^p\) is defined by Equation (4.1) in [Brooks1998].

	Brooks1998(1,2,3)

	Brooks and Gelman, 1998, General Methods for
Monitoring Convergence of Iterative Simulations.

	
compute_mpsrf()

	Compute MPSRF.

	
print_result()

	Print the description and the result of MCMC chains and its diagnostic.

	
update_W(samps)

	Update the within-sequence varance matrix W for a chain samps.

	Parameters

	samps (numpy:ndarray) – a sequence of samples generated

	
class hippylib2muq.mcmc.diagnostics.PSRF(nsamps, nchain, calEss=False, max_lag=None)

	Bases: object

Computing the Potential Scale Reduction Factor and the effective sample size

This class is to compute the Potential Scale Reduction Factor (PSRF) and
the effective sample size (ESS) as described in [Brooks1998] and [Gelman2014].
Note that PSRF is the square-root version of \(\hat{R}\) where
\(\hat{R}\) is defined by Equation (1.1) defined in [Brooks1998].

	Gelman2014

	Gelman et al., 2014, Bayesian Data Analysis, pp 286-287.

	
compute_PsrfEss(plot_acorr=False, write_acorr=False, fname=None)

	Compute PSRF and ESS

	Parameters

	
	plot_acorr (bool) – if True, plot the autocorrelation function

	write_acorr (bool) – if True, write the autocorrelation function to
a file

	fname (string) – file name for the autocorrelation function result

	
print_result()

	Print the description and the result of MCMC chains and its diagnostic.

	
update_W(sample)

	Update the within-sequence varance W for a chain samps.

	Parameters

	samps (numpy:ndarray) – a sequence of samples generated

hippylib2muq.mcmc.qoi module

This module contains some functions related to the quantity of interest.

	
hippylib2muq.mcmc.qoi.cal_qoiTracer(pde, qoi, muq_samps)

	This function is for tracing the quantity of interest.

	Parameters

	
	pde (hippylib:PDEProblem) – a hippylib:PDEProblem instance

	qoi – the quantity of interest; it should contain the member function
named as eval which evaluates the value of qoi

	muq_samps – samples generated from muq sampler

	
hippylib2muq.mcmc.qoi.track_qoiTracer(pde, qoi, method_list, max_lag=None)

	This function computes the autocorrelation function and the effective sample
size of the quantity of interest.

	Parameters

	
	pde (hippylib:PDEProblem) – a hippylib:PDEProblem instance

	qoi – the quantity of interest; it should contain the member function

	method_list (dictionary) – a dictionary containing MCMC methods descriptions
with samples generated from muq sampler

	max_lag (int) – maximum of time lag for computing the autocorrelation
function

Module contents

 hippylib2muq.utility package

hippylib2muq.utility package

Submodules

hippylib2muq.utility.conversion module

This module provides type conversions for the proper use of dependent packages.

	
hippylib2muq.utility.conversion.const_dlVector(mat, dim)

	Construct and initialize a dolfin vector so that it is compatible with matrix
\(A\) for the multiplication \(Ax = b\).

	Parameters

	
	mat (dolfin:matrix) – a dolfin:matrix

	dim (int) – 0 for b and 1 for x

	Returns

	an initialized dolfin:vector which is compatiable with mat

	
hippylib2muq.utility.conversion.dlVector2npArray(vec)

	Convert a dolfin:vector to a numpy:ndarray.

	Parameters

	vec (dolfin:vector) – a dolfin:vector

	Returns

	converted numpy:ndarray

	
hippylib2muq.utility.conversion.npArray2dlVector(arr, vec)

	Assign values of numpy:ndarray to dolfin:vector.

	Parameters

	
	arr (numpy:ndarray) – a numpy:ndarray

	vec (dolfin:vector) – a dolfin:vector assigned by arr

hippylib2muq.utility.postprocessing module

This module provides postprocessing related functions.

	
hippylib2muq.utility.postprocessing.plot_qoiResult(method_list, qoi_dataset, max_lag=None)

	Plot the result of MCMC simulations for the quantity of interest

	Parameters

	
	method_list (dictionary) – the discriptions of MCMC methods used

	qoi_dataset (dictionary) – a dictionary returned from a call of
hippymuq:track_qoiTracer

	max_lag (int) – maximum of time lag for computing the autocorrelation
function

	
hippylib2muq.utility.postprocessing.print_methodDict(method_list)

	Print the method descriptions formatted for the MCMC simulation.

For MCMC kernel, abbreviations mean –

	Name

	MCMC kernel

	mh

	Metropolis-Hastings

	dr

	Delayed Rejection

For MCMC proposal, abbreviations mean –

	Name

	MCMC proposal

	pcn

	Preconditioned Crank-Nicolson

	mala

	preconditioned Metropolis Adjusted Langevin Algorithm

Note that this auxiliary function is only for the MCMC kernels and proposals
listed in the above tables, but other MCMC methods such as Dimension-independent
likelihood-informed MCMC are also available for use.

	Parameters

	method_list (dictionary) – the discriptions of MCMC methods

	
hippylib2muq.utility.postprocessing.print_qoiResult(method_list, qoi_dataset)

	Print the result of MCMC simulations for the quantity of interest.

	Parameters

	
	method_list (dictionary) – the discriptions of MCMC methods used

	qoi_dataset (dictionary) – a dictionary returned from a call of
hippymuq:track_qoiTracer

Module contents

 Python Module Index

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hippylib2muq	

 	
 	
 hippylib2muq.interface	

 	
 	
 hippylib2muq.interface.gaussian	

 	
 	
 hippylib2muq.interface.modpiece	

 	
 	
 hippylib2muq.mcmc	

 	
 	
 hippylib2muq.mcmc.diagnostics	

 	
 	
 hippylib2muq.mcmc.qoi	

 	
 	
 hippylib2muq.utility	

 	
 	
 hippylib2muq.utility.conversion	

 	
 	
 hippylib2muq.utility.postprocessing	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | J
 | L
 | M
 | N
 | P
 | S
 | T
 | U

A

 	
 	ApplyCovariance() (hippylib2muq.interface.gaussian.BiLaplaceGaussian method)

 	(hippylib2muq.interface.gaussian.LaplaceGaussian method)

 	(hippylib2muq.interface.gaussian.LAPosteriorGaussian method)

 	ApplyCovSqrt() (hippylib2muq.interface.gaussian.BiLaplaceGaussian method)

 	(hippylib2muq.interface.gaussian.LAPosteriorGaussian method)

 	
 	ApplyHessianImpl() (hippylib2muq.interface.modpiece.Param2LogLikelihood method)

 	ApplyJacobianImpl() (hippylib2muq.interface.modpiece.Param2LogLikelihood method)

 	ApplyPrecision() (hippylib2muq.interface.gaussian.BiLaplaceGaussian method)

 	(hippylib2muq.interface.gaussian.LaplaceGaussian method)

 	(hippylib2muq.interface.gaussian.LAPosteriorGaussian method)

 	ApplyPrecSqrt() (hippylib2muq.interface.gaussian.BiLaplaceGaussian method)

B

 	
 	BiLaplaceGaussian (class in hippylib2muq.interface.gaussian)

C

 	
 	cal_qoiTracer() (in module hippylib2muq.mcmc.qoi)

 	compute_mpsrf() (hippylib2muq.mcmc.diagnostics.MultPSRF method)

 	
 	compute_PsrfEss() (hippylib2muq.mcmc.diagnostics.PSRF method)

 	const_dlVector() (in module hippylib2muq.utility.conversion)

D

 	
 	dlVector2npArray() (in module hippylib2muq.utility.conversion)

E

 	
 	EvaluateImpl() (hippylib2muq.interface.modpiece.LogBiLaplaceGaussian method)

 	(hippylib2muq.interface.modpiece.Param2LogLikelihood method)

 	(hippylib2muq.interface.modpiece.Param2obs method)

G

 	
 	GradientImpl() (hippylib2muq.interface.modpiece.Param2LogLikelihood method)

 	(hippylib2muq.interface.modpiece.Param2obs method)

H

 	
 	hippylib2muq (module)

 	hippylib2muq.interface (module)

 	hippylib2muq.interface.gaussian (module)

 	hippylib2muq.interface.modpiece (module)

 	hippylib2muq.mcmc (module)

 	
 	hippylib2muq.mcmc.diagnostics (module)

 	hippylib2muq.mcmc.qoi (module)

 	hippylib2muq.utility (module)

 	hippylib2muq.utility.conversion (module)

 	hippylib2muq.utility.postprocessing (module)

J

 	
 	JacobianImpl() (hippylib2muq.interface.modpiece.Param2LogLikelihood method)

L

 	
 	LaplaceGaussian (class in hippylib2muq.interface.gaussian)

 	
 	LAPosteriorGaussian (class in hippylib2muq.interface.gaussian)

 	LogBiLaplaceGaussian (class in hippylib2muq.interface.modpiece)

M

 	
 	MultPSRF (class in hippylib2muq.mcmc.diagnostics)

N

 	
 	npArray2dlVector() (in module hippylib2muq.utility.conversion)

P

 	
 	Param2LogLikelihood (class in hippylib2muq.interface.modpiece)

 	Param2obs (class in hippylib2muq.interface.modpiece)

 	plot_qoiResult() (in module hippylib2muq.utility.postprocessing)

 	print_methodDict() (in module hippylib2muq.utility.postprocessing)

 	
 	print_qoiResult() (in module hippylib2muq.utility.postprocessing)

 	print_result() (hippylib2muq.mcmc.diagnostics.MultPSRF method)

 	(hippylib2muq.mcmc.diagnostics.PSRF method)

 	PSRF (class in hippylib2muq.mcmc.diagnostics)

S

 	
 	SampleImpl() (hippylib2muq.interface.gaussian.BiLaplaceGaussian method)

 	(hippylib2muq.interface.gaussian.LaplaceGaussian method)

 	(hippylib2muq.interface.gaussian.LAPosteriorGaussian method)

T

 	
 	track_qoiTracer() (in module hippylib2muq.mcmc.qoi)

U

 	
 	update_W() (hippylib2muq.mcmc.diagnostics.MultPSRF method)

 	(hippylib2muq.mcmc.diagnostics.PSRF method)

 Bayesian quantification of parameter uncertainty

\[\def\data{ {\bf d}_\rm{obs}}
\def\vec{\bf}
\def\m{ {\bf m}}
\def\map{m_{\nu}}
\def\postcov{ \mathcal{C}_{\nu} }
\def\prcov{ \mathcal{C}_{\text{prior}} }
\def\matrix{\bf}
\def\Hmisfit{ \mathcal{H}_{\text{misfit}} }
\def\diag{\operatorname{diag}}
\def\Vr{{\matrix V}_r}
\def\Wr{{\matrix W}_r}
\def\Ir{{\matrix I}_r}
\def\Dr{{\matrix D}_r}
\def\H{{\matrix H} }
\def\matHmis{ {\H}_{\rm misfit}}
\def\Gpost{\boldsymbol{\Gamma}_{\nu} }
\def\Gprior{ \boldsymbol{\Gamma}_{\rm prior} }\]

Bayesian quantification of parameter uncertainty

I. Estimating the posterior pdf of the coefficient parameter field in an elliptic PDE

In this example we tackle the problem of quantifying the
uncertainty in the solution of an inverse problem governed by an
elliptic PDE via the Bayesian inference framework.
Hence, we state the inverse problem as a
problem of statistical inference over the space of uncertain
parameters, which are to be inferred from data and a physical
model. The resulting solution to the statistical inverse problem
is a posterior distribution that assigns to any candidate set of
parameter fields, our belief (expressed as a probability) that a
member of this candidate set is the “true” parameter field that
gave rise to the observed data.

Bayes’s Theorem

The posterior probability distribution combines the prior pdf
\(\mu_{\text{prior}}(m)\) over the parameter space, which encodes
any knowledge or assumptions about the parameter space that we may
wish to impose before the data are considered, with a likelihood pdf
\(\pi_{\text{like}}(\data \; | \; m)\), which explicitly
represents the probability that a given parameter \(m\)
might give rise to the observed data \(\data \in \mathbb{R}^{n_t}\), namely:

\[\begin{align}
d \mu_{\text{post}}(m | \data) \propto \pi_{\text{like}}(\data \,|\, m) \, d\mu_{\text{prior}}(m).
\end{align}\]

Note that infinite-dimensional analog of Bayes’s formula requires the use Radon-Nikodym derivatives instead of probability density functions.

The prior

We consider a Gaussian prior with mean \(m_{\rm prior}\) and covariance
\(\prcov\), \(\mu_{\rm prior} \sim \mathcal{N}({m}_{\rm prior}, \prcov)\).
The covariance is given by the discretization of the inverse of
differential operator \(\mathcal{A}^{-2} = (-\gamma \Delta + \delta I)^{-2}\),
where \(\gamma\), \(\delta > 0\) control the correlation length and the variance of the prior operator. This choice of prior ensures that it is a trace-class operator, guaranteeing bounded pointwise variance and a well-posed infinite-dimensional Bayesian inverse problem.

The likelihood

\[\data = {\bf f}(m) + {\bf e }, \;\;\; {\bf e} \sim \mathcal{N}({\bf 0}, {\bf \Gamma}_{\text{noise}})\]

\[\pi_{\text like}(\data \; | \; m) \propto \exp \left(- \tfrac{1}{2} \parallel {\bf f}(m) - \data \parallel^{2}_{{\bf \Gamma}_{\text{noise}}^{-1}}\right)\]

Here \({\bf f}\) is the parameter-to-observable map that takes a parameter
\(m\) and maps it to the space observation vector \(\data\).

In this application, \({\bf f}\) consists in the composition of a PDE solve
(to compute the state \(u\)) and a pointwise observation of the state
\(u\) to extract the observation vector \(\data\).

The posterior

\[d\mu_{\text{post}}(m \; | \; \data) \propto \exp \left(- \tfrac{1}{2} \parallel {\bf f}(m) - \data \parallel^{2}_{{\bf \Gamma}_{\text{noise}}^{-1}} \! - \tfrac{1}{2}\parallel m - m_{\rm prior} \parallel^{2}_{\prcov^{-1}} \right)\]

The Laplace approximation to the posterior: \(\nu \sim \mathcal{N}({\map},\bf \postcov)\)

The mean of the Laplace approximation posterior distribution, \({\map}\), is the
parameter maximizing the posterior, and
is known as the maximum a posteriori (MAP) point. It can be found
by minimizing the negative log of the posterior, which amounts to
solving a deterministic inverse problem) with appropriately weighted norms,

\[\map := \underset{m}{\arg \min} \; \mathcal{J}(m) \;:=\;
\Big(
\frac{1}{2} \| {\bf f}(m) - \data \|^2_{ {\bf \Gamma}_{\text{noise}}^{-1}}
+\frac{1}{2} \| m -m_{\rm prior} \|^2_{\prcov^{-1}}
\Big).\]

The posterior covariance matrix is then given by the inverse of
the Hessian matrix of \(\mathcal{J}\) at \(\map\), namely

\[\postcov = \left(\Hmisfit(\map) + \prcov^{-1} \right)^{-1},\]

provided that \(\Hmisfit(\map)\) is positive semidefinite.

The generalized eigenvalue problem

In what follows we denote with \(\matHmis, \Gpost, \Gprior \in \mathbb{R}^{n\times n}\)
the matrices stemming from the discretization of the
operators \(\Hmisfit(\map)\), \(\postcov\), \(\prcov\) with respect
to the unweighted Euclidean inner product.
Then we considered the symmetric generalized eigenvalue problem

\[\matHmis {\matrix V} = \Gprior^{-1} {\matrix V} {\matrix \Lambda},\]

where \({\matrix \Lambda} = \diag(\lambda_i) \in \mathbb{R}^{n\times n}\)
contains the generalized eigenvalues and the columns of \({\matrix V}\in \mathbb R^{n\times n}\)
the generalized eigenvectors such that
\({\matrix V}^T \Gprior^{-1} {\matrix V} = {\matrix I}\).

Randomized eigensolvers to construct the approximate spectral decomposition

When the generalized eigenvalues \(\{\lambda_i\}\) decay rapidly, we can
extract a low-rank approximation of \(\matHmis\) by retaining only the
\(r\)
largest eigenvalues and corresponding eigenvectors,

\[\matHmis \approx \Gprior^{-1} \Vr {\matrix{\Lambda}}_r \Vr^T \Gprior^{-1}.\]

Here, \(\Vr \in \mathbb{R}^{n\times r}\) contains only the \(r\)
generalized eigenvectors of \(\matHmis\) that correspond to the \(r\) largest eigenvalues,
which are assembled into the diagonal matrix \({\matrix{\Lambda}}_r = \diag (\lambda_i) \in \mathbb{R}^{r \times r}\).

The approximate posterior covariance

Using the Sherman–Morrison–Woodbury formula, we write

\[\begin{align}
 \notag \Gpost = \left(\matHmis+ \Gprior^{-1}\right)^{-1}
 = \Gprior^{-1}-\Vr {\matrix{D}}_r \Vr^T +
 \mathcal{O}\left(\sum_{i=r+1}^{n} \frac{\lambda_i}{\lambda_i +
 1}\right),
\end{align}\]

where \({\matrix{D}}_r :=\diag(\lambda_i/(\lambda_i+1)) \in \mathbb{R}^{r\times r}\).
The last term in this expression captures the
error due to truncation in terms of the discarded eigenvalues; this
provides a criterion for truncating the spectrum, namely that \(r\) is
chosen such that \(\lambda_r\) is small relative to 1.

Therefore we can approximate the posterior covariance as

\[\Gpost \approx \Gprior - \Vr {\matrix{D}}_r \Vr^T\]

Drawing samples from a Gaussian distribution with covariance $Gpost$

Let \({\bf x}\) be a sample for the prior distribution, i.e. \({\bf x} \sim \mathcal{N}({\bf 0}, \Gprior)\), then, using the low rank approximation of
the posterior covariance, we compute a sample \({\bf v} \sim \mathcal{N}({\bf 0}, \Gpost)\) as

\[{\bf v} = \big\{ \Vr \big[({\matrix{\Lambda}}_r +
 \Ir)^{-1/2} - \Ir \big] \Vr^T\Gprior^{-1} + {\bf I} \big\} {\bf x}\]

Full posterior sampling via Markov chain Monte Carlo (MCMC)

The posterior can be fully explored by using MCMC algorithms, the most popular method for sampling from a probability distribution.
In this example, some of the advanced MCMC algorithms are considered and compared in terms of efficiency and accuracy.

The preconditioned Crank-Nicolson algorithm (pCN)

The pCN algorithm is perhaps the simplest MCMC method that is well-defined in the infinite
dimensional setting ensuring a mixing rates independent of the dimension of the discretized parameter space.

The algorithm proceeds as follows (see [Cotter et al. (2013)] [Pinski et al. (2015)] for the details):

	Given \(m^{(k)}\), propose \(v^{(k+1)} = m_{\rm prop} + \sqrt{1 - \beta^2}(m^{(k)} - m_{\rm prop}) + \beta \xi^{(k)}, \quad \xi^{(k)} \sim \mathcal{N}(0, \mathcal{C}_{\rm prop})\)

	Set \(m^{(k+1)} = v^{(k+1)}\) with probability \(a(m^{(k)}, v^{(k+1)}) = \min \left(1, \frac{\mu_{\text{post}}(v^{(k+1)}) q(v^{(k+1)}, m^{(k)})}{\mu_{\text{post}}(m^{(k)}) q(m^{(k)}, v^{(k+1)})} \right)\)

where \(q(m,v) \sim \mathcal{N}\left(m_{\rm prop} + \sqrt{1 - \beta^2}(m - m_{\rm prop}), \beta^2 \mathcal{C}_{\rm prop} \right)\) with proposal mean \(m_{\rm prop}\) and covariance \(\mathcal{C}_{\rm prop}\) and \(\beta\) is a parameter controlling the step length of the proposal.

The preconditioned Metropolis adjusted Langevin algorithm (MALA)

The MALA algorithm is built on two mechanisms: the overdamped Langevin diffusion to propose a move and the Metropolis–Hastings algorithm to accept or reject the proposal move [Roberts and Tweedie (1996)].

The preconditioned MALA algorithm is described as follows:

	Given \(m^{(k)}\), propose \(v^{(k+1)} = m^{(k)} + \tau \mathcal{A}_{\rm prop} \nabla \log \mu_{\text{post}} (m^{(k)}) + \sqrt{2 \tau \mathcal{A}_{\rm prop}} \xi^{(k)}, \quad \xi^{(k)} \sim \mathcal{N}(0, \mathcal{I})\)

	Set \(m^{(k+1)} = v^{(k+1)}\) with probability \(a(m^{(k)}, v^{(k+1)}) = \min \left(1, \frac{\mu_{\text{post}}(v^{(k+1)}) q(v^{(k+1)}, m^{(k)})}{\mu_{\text{post}}(m^{(k)}) q(m^{(k)}, v^{(k+1)})} \right)\)

where \(q(m,v) \sim \mathcal{N}\left(m + \tau \mathcal{A}_{\rm prop} \nabla \log \mu_{\text{post}} (m), 2 \tau \mathcal{A}_{\rm prop} \right)\) with a proposal covariance \(\mathcal{A}_{\rm prop}\) and \(\tau\) is a step size.

The Delayed Rejection (DR)

The basic idea of the delayed rejection is to use a sequence of stages in each iteration.
Unlike the basic Metropolis-Hastings algorithm, if a candidate is rejected, a new move is proposed.
The acceptance rate for the new proposal move is adjusted so that the stationary distribution is preserved.
For the details, see [Mira (2001)].

This tutorial shows

	Definition of the component of an inverse problem (the forward problem, the prior, and the misfit functional) using hIPPYlib

	Computation of the maximum a posterior MAP point using inexact Newton-CG algorithm

	Low-rank based approximation of the posterior covariance under the Laplace Approximation

	Sampling from the prior distribution and Laplace Approximation using hIPPYlib

	Construction of a MUQ workgraph using a PDE model defined in hIPPYlib

	Exploring the full posterior using the MCMC methods implemented in MUQ

	Convergence diagnostics of MCMC simulation results and their comparison

Mathematical tools used

	Finite element method

	Derivation of gradient and Hessian via the adjoint method

	Inexact Newton-CG

	Randomized eigensolvers

	Bayes’ formula

	MCMC methods

List of software used

hIPPYlib, MUQ and their interfaces are the main software framework in this tutorial.
Additional tools used are:

	FEniCS, A parallel finite element element library for the discretization of partial differential equations

	PETSc, A set of data structures and routines for scalable and efficient linear algebra operations and solvers

	Numpy, A python package for linear algebra

	Matplotlib, A python package for visualizing the results

References

Cotter, S. L., Roberts, G. O., Stuart, A. M.,

 <no title>

 _ ___ ____ ______ ___ _ _ __ __ _ _ ___
| |__ |_ _| _ \| _ \ \ / / (_) |__ | \/ | | | |/ _ \
| '_ \ | || |_) | |_) \ V /| | | '_ \ _____| |\/| | | | | | | |
| | | || || __/| __/ | | | | | |_) |_____| | | | |_| | |_| |
|_| |_|___|_| |_| |_| |_|_|_.__/ |_| |_|___/ ___\

Scalable Markov chain Monte Carlo Sampling Methods for Large-scale Bayesian
Inverse Problems Governed by PDEs

hIPPYlib-MUQ is a Python interface between two open source softwares, hIPPYlib
and MUQ, which have complementary capabilities. hIPPYlib [https://hippylib.github.io]
is an extensible software package aimed at solving deterministic and linearized Bayesian inverse
problems governed by PDEs.
MUQ [http://muq.mit.edu/] is a collection of tools for solving uncertainty quantification problems.
hIPPYlib-MUQ integrates these two libraries into a unique software framework,
allowing users to implement the state-of-the-art Bayesian inversion algorithms
in a seamless way.

Please look into example notebook below to get to know what hIPPYlib-MUQ
does with step-by-step implementations.

_images/poisson_15_1.png
True parameter

W i

15

10

0s

00

10

s

MAP

15

10

0s

00

10

s

Recovered state

10

08

06

04

02

00

_images/poisson_17_1.png
.

.

.

100

5

Bl

anjenuabi

107

100

B

number

_images/poisson_11_1.png
r

True parameter

Prior mean

_images/poisson_13_1.png
True state

Observations

10

08

06

04

02

00

_images/poisson_19_0.png
sajdwes Jold sa|dwes sde|deq

_images/poisson_28_1.png
